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Corrigendum

On the derivative of the Legendre function of the first kind with respect to its degree
Radosław Szmytkowski 2006 J. Phys. A: Math. Gen. 39 15147–15172

Our claim that at t = z the integrand in

Rn(z) = 1

2nπ i

∮
C(+)

dt

(
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)n

(t − z)n+1
ln

t + 1

z + 1
(5.5)

has a pole of order n + 1 is erroneous. The presence of ln[(t + 1)/(z + 1)] (we recall that the
principal branch of the logarithm is used) causes that if z is not on the cut (−∞, −1], the point
t = z is regular for n = 0 or (when z �= 1) is a pole of order n for n � 1. Thus, under the
aforementioned restrictions imposed on z (in fact, these restrictions may be relaxed by carrying
out a reasoning analogous to that presented below in the support of equation (5.6), by a direct
application of the theory of residues to the integral in equation (5.5), one obtains

Rn(z) = 1
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.

Nevertheless, the mistake we have made does not invalidate any formula in the paper. In
particular, the relation

Rn(z) = 1
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]
t=z

(5.6)

remains valid despite our reasoning leading to it being incorrect.
The correct argument supporting equation (5.6) is as follows.
Assume at first that z �= 1 and that z is not on the cut (−∞, −1]. Then it is evident that

equation (5.5) may be rewritten as

Rn(z) = 1
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∮
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Under the assumptions made, at t = z both integrands in the above have poles of order n + 1
(except for the case of z = 0 when the second integral vanishes) and by the theory of residues
one obtains

Rn(z) = 1
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Hence, equation (5.6) follows immediately. It is easy to verify that equation (5.6) also remains
valid if z = 0. When z = 1, the integrand in (5.5) is analytic in the domain enclosed by C(+),
so that it holds that Rn(1) = 0. The same result follows from equation (5.6), which is thus
proved to be valid for z ∈ C \ (−∞, −1].

Next, consider the case z ∈ (−∞, −1). We have

Rn(x ± i0) = lim
z→x±i0

Rn(z) (−∞ < x < −1).
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Since from equation (5.6) (proved so far for z ∈ C \ (−∞, −1]) it may be shown (cf equation
(5.9) in the paper) that Rn(z) is a polynomial in z of degree n, the two limits in the above
equation must be identical, being equal to the polynomial Rn(x). Thus, one may use equation
(5.6) to represent Rn(z) also for z ∈ (−∞, −1).

For z = −1 we define

Rn(−1) = lim
z→−1

Rn(z).

Since Rn(z) is the polynomial in z (cf the remark in the preceding paragraph), the limit clearly
exists, being the value of this polynomial at z = −1.


